ATASTRUCTURES USING ‘C’

The British Constitution

Crown

Church of House of House of Supreme

England Commons

Rural District County Borough

COUﬂCil Council

More Trees Examples

e Unix/ Windows file structure

cd1B/

fuserfticoursesS

cs252
grades : grades
homeworks’ | [programs/ prajects!
by 1 | (w2 | (b 3 1 2 3 1
" " " pr . # papers’ demos!

byl oo

sellhigh

market

Definition of Tree

& A tree Is a finite set of one or more nodes
such that:

@ There iIs a specially designated node called
the root.

% The remaining nodes are partitioned into n>=0
disjoint sets Ty, ..., Tn, where each of these sets Is
a tree.

& We call Ty, ..., Tn the subtrees of the root.

Level and Depth

node (13)

degree of a node
leaf (terminal)
nonterminal
parent

children

sibling

degree of a tree (3)
ancestor

level of a node
height of a tree (4)

| evel

1
;I

A P 1:2 3— > 2
2 io-0-33
0 0 4 4

.
wr

.

wr

.
wr

T Y
w W

Terminology

* The degree of a node is the number of subtrees
of the node

2 The degree of A is 3; the degree of C is 1.

The node with degree O is a leaf or terminal
node.

A node that has subtrees is the parent of the
roots of the subtrees.

The roots of these subtrees are the children of
the node.

Children of the same parent are siblings.

The ancestors of a node are all the nodes
along the path from the root to the node.

Tree Properties

Property Value
Number of nodes
Height

Root Node

L eaves

Interior nodes
Number of levels
Ancestors of H
Descendants of B
Siblings of E
Right subtree

@ List Representation
@ (A(B(E(K,L),F),C(G),D(H(M),1,J)))
= The root comes first, followed by a list of sub-trees

Representation of Trees

data

link 1

link 2

link n

How many link

fields are
needed in such a representation?

e Every tree node:

A Tree Node

— object — useful information
— children — pointers to its children nodes

/

O~

N

\

/

O

<~ T

O

O

/

/

Left Child - Right Sibling

/®

data

left child

right sibling

@Q@@@g@

®7

Tree ADT

Objects: any type of objects can be stored in a tree
Methods:

accessor methods
— root() — return the root of the tree
— parent(p) — return the parent of a node
— children(p) — returns the children of a node

guery methods
— size() — returns the number of nodes in the tree
— IsEmpty() - returns true if the tree is empty
— elements() — returns all elements
— IsRoot(p), isInternal(p), isExternal(p)

Tree Implementation

typedef struct tnode {

Int key;
struct tnode* Ichild;
struct tnode* sibling;

} *ptnode;

Create a tree with three nodes (one root & two children)
Insert a new node (in tree with root R, as a new child at level L)
Delete a node (in tree with root R, the first child at level L)

Tree Traversal

Two main methods:
— Preorder
— Postorder

Recursive definition

PREorder:

— visit the root
— traverse in preorder the children (subtrees)

POSTorder
— traverse in postorder the children (subtrees)

__ et tha rnnt

Preorder

traversal
Algorithm preQOrder(v)
Vv
for each w of vdo
preOrder(w)

P

Title) &bty act m @ @ Feferenices

Faper

(506 (8)(9)(10) A2) (13)

Postorder

traversal
Algorithm postOrder(v)
for each w of vdo
postOrder(w)
Vv

e du (disk usage) command in Unix

Ll B 1
fuserfticoursess
2a8
c=01 6
2K
10k 229K
grades homeworkss programss projectss

2l 1k 1k

TR

vl el pr2 | | pr3 papers
sk || 2k | | 41| |5T| (a7 | T4k 1k

brine | cooe sellhigh market
26 Salk 4 TEEK

Preorder Implementation

public void preorder(ptnode t) {
ptnode ptr;
display(t->key);
for(ptr = t->Ichild; NULL != ptr; ptr = ptr->sibling) {
preorder(ptr);
}
}

Postorder Implementation

public void postorder(ptnode t) {
ptnode ptr;
for(ptr = t->Ichild; NULL != ptr; ptr = ptr->sibling) {
postorder(ptr);

}
display(t->key);

Binary Trees

@ A special class of trees: max degree for each node
IS 2

@ Recursive definition: A binary tree is a finite set
of nodes that iIs either empty or consists of a root
and two disjoint binary trees called the left
subtree and the right subtree.

@ Any tree can be transformed into binary tree.

= by left child-right sibling representation

Example

o

(A
&

©

™

<>

ADT Binary Tree

objects: a finite set of nodes either empty or
consisting of a root node, left BinaryTree,
and right BinaryTree.

method:
for all bt, btl, bt2 € BinTree, item € element
Bintree create().:= creates an empty binary tree
Boolean isEmpty(bt)::= if (bt==empty binary
tree) return TRUE else return FALSE

BinTree makeBT(btl, item, bt2)::= return a binary tree
whose left subtree is btl, whose right subtree is bt2,
and whose root node contains the data item

Bintree leftChild(bt)::= if (IsEmpty(bt)) return error

else return the left subtree of bt
element data(bt)::= if (IsEmpty(bt)) return error

else return the data in the root node of bt
Bintree rightChild(bt)::= if (IsEmpty(bt)) return error

else return the right subtree of bt

Samples of Trees

@ @ Complete Binary Tree
|

f Skewed Binary Tree 5

(o) (&
© 4
20

Maximum Number of Nodes in BT

The maximum number of nodes on level | of a
binary tree is 2'!, i>=1.

¢ The maximum nubmer of nodes in a binary tree
of depth k is 2k-1, k>=1.

Prove by induction.

K .
2t =24 —1
=1

Relations between Number of
Leaf Nodes and Nodes of Degree 2

For any nonempty binary tree, T, if no is the
number of leaf nodes and n2 the number of nodes
of degree 2, then no=n2+1

proof:

_et n and B denote the total number of nodes &
oranches in T.

_et No, N1, N2 represent the nodes with no children,
single child, and two children respectively.

N= no+ni+n2, B+1=n, B=ni1+2n2 ==> ni1+2n2+1=n,
Ni+2N2+1= No+Ni+N2 ==> No=n2+1

Full BT vs. Complete BT

& A full binary tree of depth k is a binary tree of

depth k having 2%1 nodes, k>=0.

@ A binary tree with n nodes and depth k is

complete iff its nodes correspond to the nodes numbered
from 1 to n in the full binary tree of depth k.

®

, <

\

@/g ce &R K

Complete binary tree Full binary tree of depth 4

Binary Tree Representations

@ If a complete binary tree with n nodes (depth =
logn + 1) Is represented sequentially, then for
any node with index i, 1<=i<=n, we have:

@ parent(i) isati/2 if il=1. If i=1, 1 is at the root and
has no parent.

z leftChild(i) is at 2i if 2i<=n. If 2i>n, then i has no
left child.

= rightChild(i) is at 2i+1 if 21 +1 <=n. If 2i +1 >n,
then i1 has no right child.

Sequential
Representation

CEISTIESRE

(o) @
& 161

(1) waste space
(2) Insertion/deletion L
problem

© X N oUW

— T EOMMOI0 |m >

Linked Representation

typedef struct tnode *ptnode;

typedef struct tnode {

InNt data;

ptnode left, right;
}s

left

data

right

/

left

N\

right

Binary Tree Traversals

@ Let L, V, and R stand for moving left, visiting
the node, and moving right.
@ There are six possible combinations of traversal
= IRr, IrR, RIr, Rrl, rRI, rIR
¢ Adopt convention that we traverse left before
right, only 3 traversals remain
= |Rr, IrR, RIr
@ Inorder, postorder, preorder

Arithmetic Expression Using BT

A

()

e

N

2l

-

ARS

Inorder traversal
A/B*C*D+E
Infix expression
preorder traversal
+**/ABCDE
prefix expression
postorder traversal
AB/C*D*E+
postfix expression
level order traversal
+*E*D/CAB

I nOrder Trave rSa| (recursive version)

void 1norder(ptnode ptr)
/* 1norder tree traversal */

{

1T (ptr) { A/B*C*D+E

inorder(ptr->left);
printf(“%d”, ptr->data);
indorder(ptr->right);

PreO rder Trave rSa| (recursive version)

void preorder(ptnode ptr)
/* preorder tree traversal */

{

it (ptr) { +**[ABCDE

printf(“%d”, ptr->data);
preorder(ptr->left);
predorder(ptr->right);

POStO rder Trave rSa| (recursive version)

void postorder(ptnode ptr)
/* postorder tree traversal */

{

1T (ptr) { AB/C*D*E+

postorder(ptr->left);
postdorder(ptr->right);
printf(“%d”, ptr->data);

| evel Order Traversal

(using queue)

void levelOrder(ptnode ptr)
/* level order tree traversal */
{
int front = rear = O;
ptnode queue[MAX QUEUE SIZE];
It (!ptr) return; /* empty queue */
enqueue(front, &rear, ptr);
for (G3) {

ptr = dequeue(&front, rear);

it (ptr) {
printf(“%d”, ptr->data);
1T (ptr->left)
enqueue(front, &rear,
ptr->left);
1T (ptr->right)
enqueue(front, &rear,
ptr->right);
}

else break;

} +*E*D/CAB

}

Fuler Tour Traversal

generic traversal of a binary tree

the preorder, inorder, and postorder traversals are special
cases of the Euler tour traversal

“walk around” the
tree and visit each

node three times:
— on the left

— from below

— on the right

Euler Tour Traversal (cont’d)

eulerTour(node v) {
perform action for visiting node on the left;
If v Is Internal then
eulerTour(v->left);
perform action for visiting node from below;
If v Is Internal then
eulerTour(v->right);
perform action for visiting node on the right;

J

Euler Tour Traversal (cont’d)

preorder traversal = Euler Tour with a “visit” only on the left
Inorder = ?
postorder=7?
Other applications: compute number of descendants for
each node v:

— counter=0

— Increment counter each time node is visited on the left

— #descendants = counter when node is visited on the right —

counter when node is visited on the left +
1

Running time for Euler Tour?

Application: Evaluation of
EXpressions

A

()

e

N

2l

-

ARS

Inorder traversal
A/B*C*D+E
Infix expression
preorder traversal
+**/ABCDE
prefix expression
postorder traversal
AB/C*D*E+
postfix expression
level order traversal
+*E*D/CAB

I nOrder Trave r8a| (recursive version)

void 1norder(ptnode ptr)
/* 1norder tree traversal */

{

1T (ptr) { A/B*C*D+E

inorder(ptr->left);
printf(“%d”, ptr->data);
inorder(ptr->right);

PreO rder Trave r8a| (recursive version)

voild preorder(ptnode ptr)
/* preorder tree traversal */

{

it (ptr) { +**[ABCDE

printf(“%d”, ptr->data);
preorder(ptr->left);
preorder(ptr->right);

POStO rder Trave r8a| (recursive version)

voild postorder(ptnode ptr)
/* postorder tree traversal */

{

1T (ptr) { AB/C*D*E+

postorder(ptr->left);
postorder(ptr->right);
printf(“%d”, ptr->data);

Application:

Propositional Calculus Expression
A variable Is an expression.

If x and y are expressions, then —x, XAy,
X\VY are expressions.

Parent
norma

Examp

neses can be used to alter the
order of evaluation (- > A > v).

e: Xy V (X5 A Xg)

Propositional Calculus Expression
(Xp A 7X5) V(7 Xy A X3) v X

e @\
e
& HE
Yo

postorder traversal (postfix evaluation)

Node Structure

left data value right

typedef emun {not, and, or, true, false } logical;
typedef struct tnode *ptnode;
typedef struct node {
logical data;
short int value,
ptnode right, left;

}

Postorder Eval

void post_order_eval(ptnode node)

{

/* modified post order traversal to evaluate a propositional
calculus tree */

If (node) {
post_order_eval(node->left);
post_order_eval(node->right);
switch(node->data) {

case not: node->value =
Inode->right->value;
break;

Postorder Eval (cont’d)

case and: node->value =
node->right->value &&
node->left->value;
break;
case or: node->value =
node->right->value | |
node->left->value;
break;
case true: node->value = TRUE;
break;
case false: node->value = FALSE;

}

