# DATA STRUCTURES USING 'C'

# The British Constitution



# More Trees Examples

• Unix / Windows file structure



### Definition of Tree

- A tree is a finite set of one or more nodes such that:
- There is a specially designated node called the root.
- The remaining nodes are partitioned into n>=0 disjoint sets T<sub>1</sub>, ..., T<sub>n</sub>, where each of these sets is a tree.
- We call T<sub>1</sub>, ..., T<sub>n</sub> the subtrees of the root.

# Level and Depth

node (13)
degree of a node
leaf (terminal)
nonterminal
parent
children
sibling
degree of a tree (3)
ancestor
level of a node
height of a tree (4)



# Terminology

- The degree of a node is the number of subtrees of the node
  - The degree of A is 3; the degree of C is 1.
- The node with degree 0 is a leaf or terminal node.
- A node that has subtrees is the parent of the roots of the subtrees.
- The roots of these subtrees are the *children* of the node.
- Children of the same parent are siblings.
- The ancestors of a node are all the nodes along the path from the root to the node.

# Tree Properties



### **Property**

Number of nodes

Height

Root Node

Leaves

Interior nodes

Number of levels

Ancestors of H

Descendants of B

Siblings of E

Right subtree

### Value

# Representation of Trees

- List Representation
  - (A(B(E(K,L),F),C(G),D(H(M),I,J)))
  - The root comes first, followed by a list of sub-trees

| data link 1 link 2 | ••• | link n |
|--------------------|-----|--------|
|--------------------|-----|--------|

How many link fields are needed in such a representation?

### A Tree Node

- Every tree node:
  - object useful information
  - children pointers to its children nodes



# Left Child - Right Sibling



### Tree ADT

- Objects: any type of objects can be stored in a tree
- Methods:
- accessor methods
  - root() return the root of the tree
  - parent(p) return the parent of a node
  - children(p) returns the children of a node
- query methods
  - size() returns the number of nodes in the tree
  - isEmpty() returns true if the tree is empty
  - elements() returns all elements
  - isRoot(p), isInternal(p), isExternal(p)

# Tree Implementation

```
typedef struct tnode {
    int key;
    struct tnode* lchild;
    struct tnode* sibling;
} *ptnode;
```

- Create a tree with three nodes (one root & two children)
- Insert a new node (in tree with root R, as a new child at level L)
- Delete a node (in tree with root R, the first child at level L)

### Tree Traversal

- Two main methods:
  - Preorder
  - Postorder
- Recursive definition
- PREorder:
  - visit the root
  - traverse in preorder the children (subtrees)
- POSTorder
  - traverse in postorder the children (subtrees)
  - \_ visit the root

### Preorder

preorder traversal

**Algorithm** preOrder(v)

"visit" node v

for each child w of v do

recursively perform preOrder(w)



### Postorder

postorder traversal

Algorithm postOrder(v)

for each child w of v do

recursively perform postOrder(w)

"visit" node v

• du (disk usage) command in Unix



# Preorder Implementation

```
public void preorder(ptnode t) {
    ptnode ptr;
    display(t->key);
    for(ptr = t->lchild; NULL != ptr; ptr = ptr->sibling) {
        preorder(ptr);
    }
}
```

# Postorder Implementation

```
public void postorder(ptnode t) {
    ptnode ptr;
    for(ptr = t->lchild; NULL != ptr; ptr = ptr->sibling) {
        postorder(ptr);
    }
    display(t->key);
}
```

# Binary Trees

- A special class of trees: max degree for each node is 2
- Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left* subtree and the right subtree.
- Any tree can be transformed into binary tree.
  - by left child-right sibling representation

# Example



# ADT Binary Tree

objects: a finite set of nodes either empty or consisting of a root node, left *BinaryTree*, and right *BinaryTree*.

### method:

for all bt, bt1,  $bt2 \in BinTree$ ,  $item \in element$  Bintree create()::= creates an empty binary tree Boolean is Empty(bt)::= if (bt==empty binary tree) return TRUE else return FALSE BinTree makeBT(bt1, item, bt2)::= return a binary tree
 whose left subtree is bt1, whose right subtree is bt2,
 and whose root node contains the data item
Bintree leftChild(bt)::= if (IsEmpty(bt)) return error
 else return the left subtree of bt
element data(bt)::= if (IsEmpty(bt)) return error
 else return the data in the root node of bt
Bintree rightChild(bt)::= if (IsEmpty(bt)) return error
 else return the right subtree of bt

# Samples of Trees



### Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is 2<sup>i-1</sup>, i>=1.
- The maximum nubmer of nodes in a binary tree of depth k is 2<sup>k</sup>-1, k>=1.

### Prove by induction.

$$\sum_{i=1}^{k} 2^{i-1} = 2^k - 1$$

### Relations between Number of Leaf Nodes and Nodes of Degree 2

For any nonempty binary tree, T, if  $n_0$  is the number of leaf nodes and  $n_2$  the number of nodes of degree 2, then  $n_0=n_2+1$ 

### proof:

Let *n* and *B* denote the total number of nodes & branches in *T*.

Let  $n_0$ ,  $n_1$ ,  $n_2$  represent the nodes with no children, single child, and two children respectively.

$$n = n_0 + n_1 + n_2$$
,  $B + 1 = n$ ,  $B = n_1 + 2n_2 = - > n_1 + 2n_2 + 1 = n$ ,  $n_1 + 2n_2 + 1 = n_0 + n_1 + n_2 = - > n_0 = n_2 + 1$ 

# Full BT vs. Complete BT

- A full binary tree of depth k is a binary tree of depth k having  $2^k$ -1 nodes, k>=0.
- A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.





Full binary tree of depth 4

# Binary Tree Representations

- If a complete binary tree with n nodes (depth = log n + 1) is represented sequentially, then for any node with index i, 1 <= i <= n, we have:
  - parent(i) is at i/2 if i!=1. If i=1, i is at the root and has no parent.
  - leftChild(i) is at 2i if 2i <= n. If 2i > n, then i has no left child.
  - rightChild(i) is at 2i+1 if 2i+1 <= n. If 2i+1 > n, then i has no right child.

# Sequential Representation



[1]

[2]

A

B

# Linked Representation

```
typedef struct tnode *ptnode;
typedef struct tnode {
  int data;
  ptnode left, right;
};
```

left data right



# Binary Tree Traversals

- Let L, V, and R stand for moving left, visiting the node, and moving right.
- There are six possible combinations of traversal
   IRr, IrR, RIr, RrI, rRI, rIR
- Adopt convention that we traverse left before right, only 3 traversals remain
  - IRr, IrR, RIr
  - inorder, postorder, preorder

# Arithmetic Expression Using BT



inorder traversal A/B \* C \* D + Einfix expression preorder traversal + \* \* / A B C D E prefix expression postorder traversal AB/C\*D\*E+postfix expression level order traversal +\*E\*D/CAB

### Inorder Traversal (recursive version)

### Preorder Traversal (recursive version)

### Postorder Traversal (recursive version)

### Level Order Traversal

(using queue)

```
void levelOrder(ptnode ptr)
/* level order tree traversal */
{
  int front = rear = 0;
  ptnode queue[MAX_QUEUE_SIZE];
  if (!ptr) return; /* empty queue */
  enqueue(front, &rear, ptr);
  for (;;) {
    ptr = dequeue(&front, rear);
```

```
if (ptr) {
  printf("%d", ptr->data);
  if (ptr->left)
    enqueue(front, &rear,
                  ptr->left);
  if (ptr->right)
    enqueue(front, &rear,
                  ptr->right);
else break;
                        + * E * D / C A B
```

### **Euler Tour Traversal**

- generic traversal of a binary tree
- the preorder, inorder, and postorder traversals are special cases of the Euler tour traversal
- "walk around" the tree and visit each node three times:
  - on the left
  - from below
  - on the right



# Euler Tour Traversal (cont'd)

```
eulerTour(node v) {
 perform action for visiting node on the left;
 if v is internal then
    eulerTour(v->left);
 perform action for visiting node from below;
 if v is internal then
    eulerTour(v->right);
 perform action for visiting node on the right;
```

# Euler Tour Traversal (cont'd)

- preorder traversal = Euler Tour with a "visit" only on the left
- inorder = ?
- postorder = ?
- Other applications: compute number of descendants for each node v:
  - counter = 0
  - increment counter each time node is visited on the left
  - #descendants = counter when node is visited on the right –counter when node is visited on the left +

1

Running time for Euler Tour?

# Application: Evaluation of Expressions



inorder traversal A/B \* C \* D + Einfix expression preorder traversal +\*\*/ABCDEprefix expression postorder traversal AB/C\*D\*E+postfix expression level order traversal +\*E\*D/CAB

### Inorder Traversal (recursive version)

### Preorder Traversal (recursive version)

```
void preorder(ptnode ptr)
/* preorder tree traversal */
{
    if (ptr) {
        printf("%d", ptr->data);
        preorder(ptr->left);
        preorder(ptr->right);
    }
}
```

### Postorder Traversal (recursive version)

# Application: Propositional Calculus Expression

- A variable is an expression.
- If x and y are expressions, then ¬x, x∧y,
   x∨y are expressions.
- Parentheses can be used to alter the normal order of evaluation (¬ > ∧ > ∨).
- Example:  $x_1 \vee (x_2 \wedge \neg x_3)$

### **Propositional Calculus Expression**



postorder traversal (postfix evaluation)

### Node Structure

```
left data value right
```

```
typedef emun {not, and, or, true, false } logical;
typedef struct tnode *ptnode;
typedef struct node {
    logical data;
    short int value;
    ptnode right, left;
};
```

### Postorder Eval

```
void post_order_eval(ptnode node)
/* modified post order traversal to evaluate a propositional
calculus tree */
  if (node) {
    post_order_eval(node->left);
    post_order_eval(node->right);
    switch(node->data) {
     case not: node->value =
          !node->right->value;
          break;
```

# Postorder Eval (cont'd)

```
case and: node->value =
    node->right->value &&
    node->left->value;
    break;
case or: node->value =
    node->right->value | |
    node->left->value;
    break;
case true: node->value = TRUE;
    break;
case false: node->value = FALSE;
```